

Recent Developments in Science Learning Games for Informal Science Education

Walt Scacchi: *UCGameLab*, Calit2, University of California, Irvine Joe Adams: *Discovery Science Center*, Santa Ana, CA

Presentation at the Games, Learning, and Society 3.0 Symposium Madison, WI 11-13 July 07

Science Learning Games (SLG) for Informal Science Education

- Physical interaction quest game: DinoQuest at DSC
 - Life-size dinosaurs (e.g. Argentinosaursus, T-Rex)
 - Family-based problem-solving and collective learning in physical environment
 - Game progress tracked via usercontrolled IR transmitters that activate embedded sensor net
- Web-based SLG: DinoQuest Online
 - Addresses CA science education standards for K-6 grades
 - Interoperates with DinoQuest
 - Designed for internationalization
 - Developed by UCI GameLab

Research objective

- How best to employ networked computer game technology in ways that integrate
 - social learning opportunities
 - scientific visualization methods
 - external scientific datasets
 - science work practices
 - open source software community dynamics
 - playful fun

to develop, deploy, and evolve single/multi-player games for informal science education in different science disciplines.

But first, some background on science learning games

Early SLGs (1950-2005+)

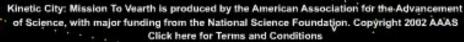
- Computer games for Operations Research
 - Game theory (1940-1950s)
- Games for Artificial Intelligence
 - Samuel's Chess and Checkers games (1950-1960s)
- Non-game science learning or scientific reasoning environments
 - Sophie (1970s)
 - Plato
- "Science inspired" games
 - Science as source for fantasy or make-believe (science fiction)
 - May be fun to play, but unclear if any science learning facilitated
 - Best outcome--inspiration to discover or acquire scientific knowledge
 - Less desirable outcome--fantasy treated as factual scientific knowledge
- Next, Science Fiction Game (SFG) and SLG examples from mid-1990-2006
 - SFGs: Disney Dino, Zoo Tycoon-Dinosaur Expansion, Nanosaurs, Droidworks
 - SLGs: KineticCity (life science, free), Genius Task Force Biology (ecology simulation, retail), Industry Player (commodity trading system, retail), GTR (racing simulation, retail), NASCAR 2007 (racing simulation, retail)

Disney Dino

Zoo Tycoon--Dinosaurs

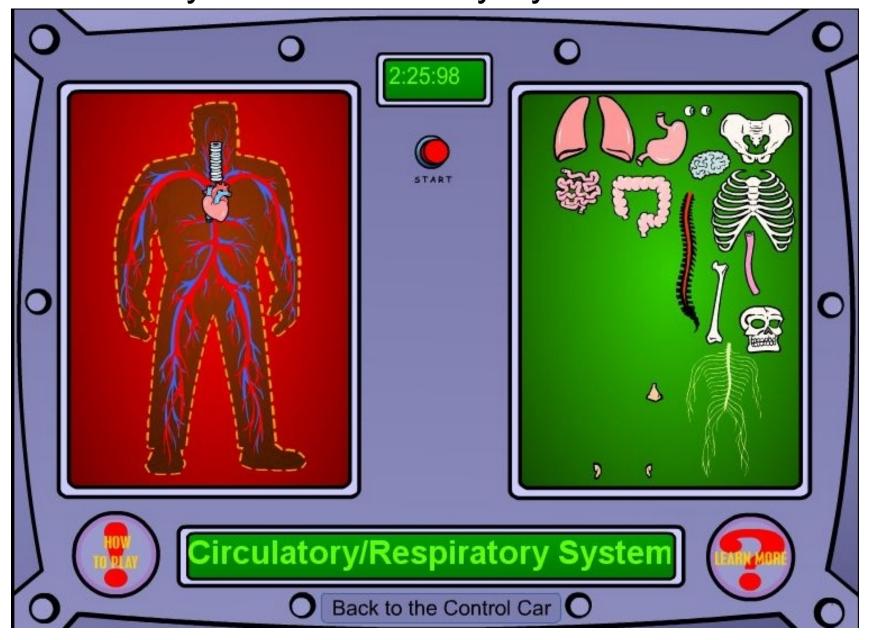
Nanosaurs (Dinosaurs with Jetpacks!)

LucasArts Droidworks


PLAY SCIENCE GAMES NOW! 600 MISSION TO VEARTH THE MOST AMAZING SCIENCE SITE ON THE INTERNET!

WHAT IS

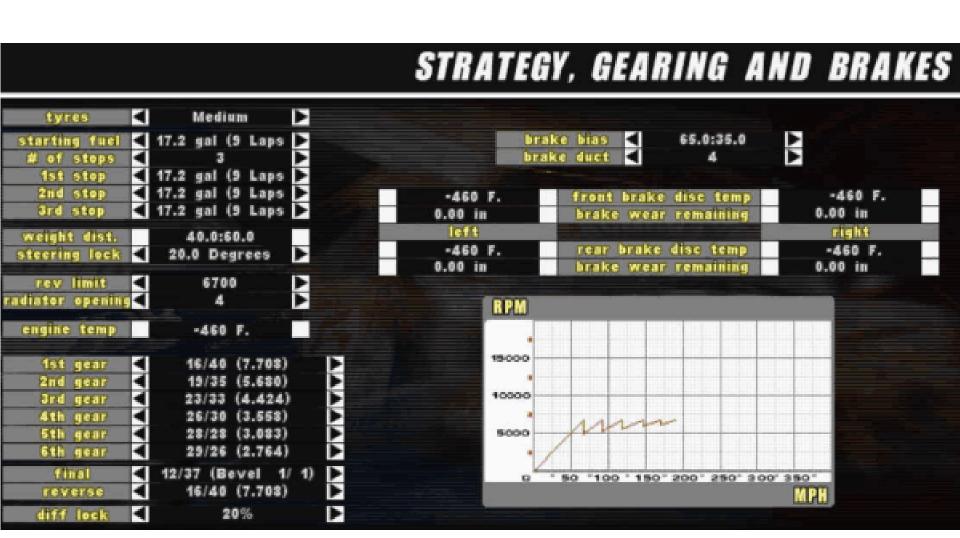
KINETIC CITY ?

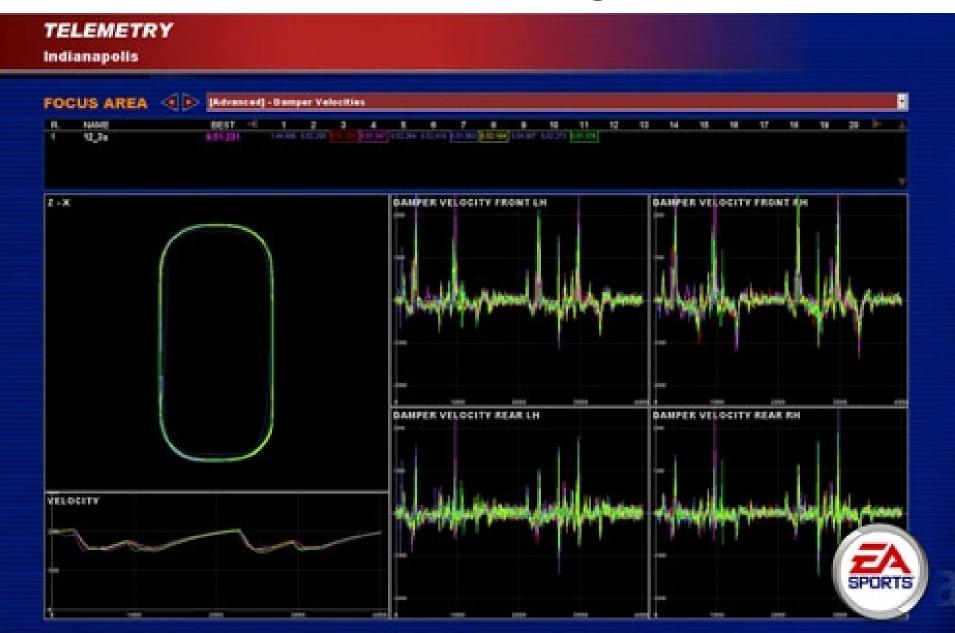


KineticCity MiniGame--Body System Identification

KineticCity Body System *Identification Game* Play-to-Learn techniques

- Given prompt (e.g., Circulatory/Respiratory system) select, drag, and place system components into correct locations
 - System component identification (e.g., heart, arteriole-venal network, esophagus, lungs) and location
 - By iconic form/shape (no names)
- Placing all correct system components allows advancement to next system; any mistake resets (removes) placed components requiring iterative play.
 - Failure-driven (trial+error iteration) and spatial-shape reasoning
 - Play-learning anomalies
 - · Some components resize, others don't
 - Nerve and arteriole-venal networks resize on placement (automatically), but bones don't
 - Systems are partial--why some components, but not others?
 - Which system -- cardio-pulmonary system vs. "circulatory/respiratory" system?


Radon Labs GmbH Game Development



GTR racing simulation

NASCAR Racing 2007

DinoQuest at DSC

Fast Facts about Discovery Science Center

- Located in Santa Ana, California
- 80,000 Sq. Ft.
- Budget: \$6,000,000 Earned Income: 82% Contributed Income: 18%

At the Center:

- 386,000 annual visitors (2006)
- 82,000 annual field trip visitors from schools
- Provide in-service science teaching training to 1,100 K-12 teachers/yr.

In the Schools:

120,000 annual students in science outreach programs

Inspire Youth of Today in Fields of Science

Science Adventure Quests

- Blending Video Game Culture and Physical Exhibits
- Putting Visitors into a Science Adventure Video Game
- \$7 Million Expansion at DSC
- Dinosaur Themed, but focused on Life Science

Discovery Science Center Goals

Create a physical exhibit that blends:

- Natural History Museum Collection,
- Science Center Hands-on Exhibits,
- Video Game Culture,
- Science research practices via "collaboratories"

Create a Cyberinfrastructure for distance learning over the Internet.

Engage and explain CA Science Education Standards.

Create electronic performance tracking ability for better evaluation capabilities.

Workforce Development

Create a mechanism that continues to drive visitors between a brick & mortar science center and the Internet/Web site multiple times.

Increase repeat usage of science center exhibits and increase visitation.

Create a replicatable and sustainable model.

DinoQuest at DSC

- Picking up information throughout the DQ site.
- Tracking visitor's success on missions.

 IR transmitter, sensor network technology, and interactive media from Creative Kingdoms, Inc.

Technology: Embedded Sensors and Transmitter Activation

Go to Field Station and Select a Mission

8 Educational Missions:

- Aimed at California Science Education Standards for grades K-6
- Mission topics: Predator / Prey, Trace Fossils, Anatomy, Habitats, Identification
- Each mission focuses on a different collaboratory and field of science
- Missions selected, tracked, and completed at networked multi-media kiosks

DinoQuest Research Team and Collaboratories:
Diverse Science Role Models (ethnicity, age, gender)

Role play (see oneself as a scientist)

After selecting a mission, head out to the dig site!

Situated role play

Search dig site and identify objects in the mission.

Computer and sensor network automatically tracks your success.

Video Game Mechanics

"Upload" data collected to collaboratories via on-site networked kiosks

- Earn Research Points for each item found.
- Obtain fossils with encoded DNA as reward for completing each mission.

Ability to save data and come back another day.

DinoQuest Online

Online Science Learning Games

- Distance learning,
- Expands on science topics,
- Additional, in-depth science missions,
- Earn points and Dino DNA by completing missions.
- Level-up into multi-player dinosaur ecology simulation (*Dinosphere*)

DinoQuest Online (released in late September)

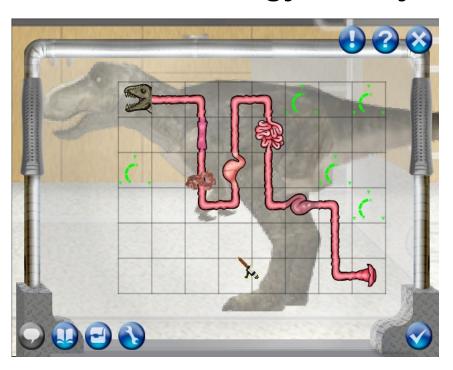
- Log in with password online or from DSC
- Go to each collaboratory
- http://www.dqonline.org
 - register OR enter "demo" "demo"

- Same scientists as DinoQuest at DSC
- Expand upon science education standards in each lab


Multiple Science Learning Games: Dinosaur Dig Pit Field Site Collab Game

• Different objectives for each game.

Multiple Science Learning Games: Narrative Content


DinoQuest Online Reconstruction Lab

DinoQuest Reconstruction Laboratory (help view)

Multiple Science Learning Games: Zoology and Systems Collab Games

- Build a working digestive system out of available organs and "connnectors"
- Move Oxygen and CO2 through a cardio-pulmonary system

Multiple Science Learning Games: Ecology/Habitat Collab Game

 Gain points by matching prey/predator and food chain relations via *Tretis*-like game play

Multiple Science Learning Games: Biomechanical Collab Mini Games

Mass and balance

Proportion and speed

Matching anatomical structures to diet

Multiple Science Learning Games: Resource Interaction Collab Game Spaces

MyLab - shows missions completed both online and at the DSC

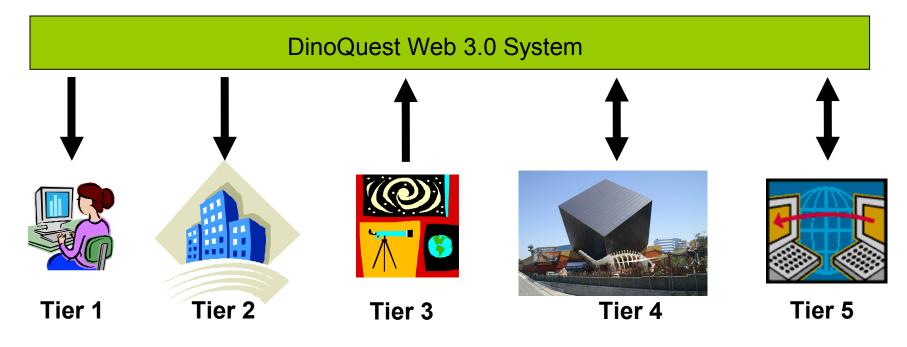
DinoSphere – allows building of your own Dinosaur with DNA collected from missions.

Go back online or to Science Center to obtain different DNA by completing more missions!

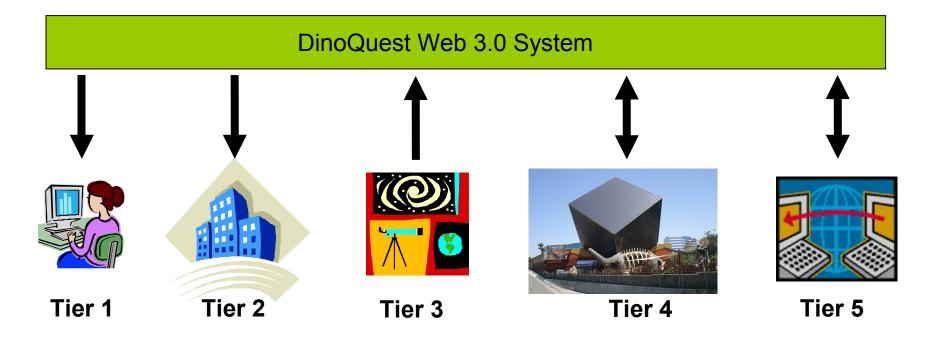
Evaluation Potential

DinoQuest and DinoQuest Online allow for the following evaluations:

Player Centered: scores and missions completed identify progress and provide feedback in context.


Exhibit Centered: ability to test content comprehension by player quiz upon completing mission.

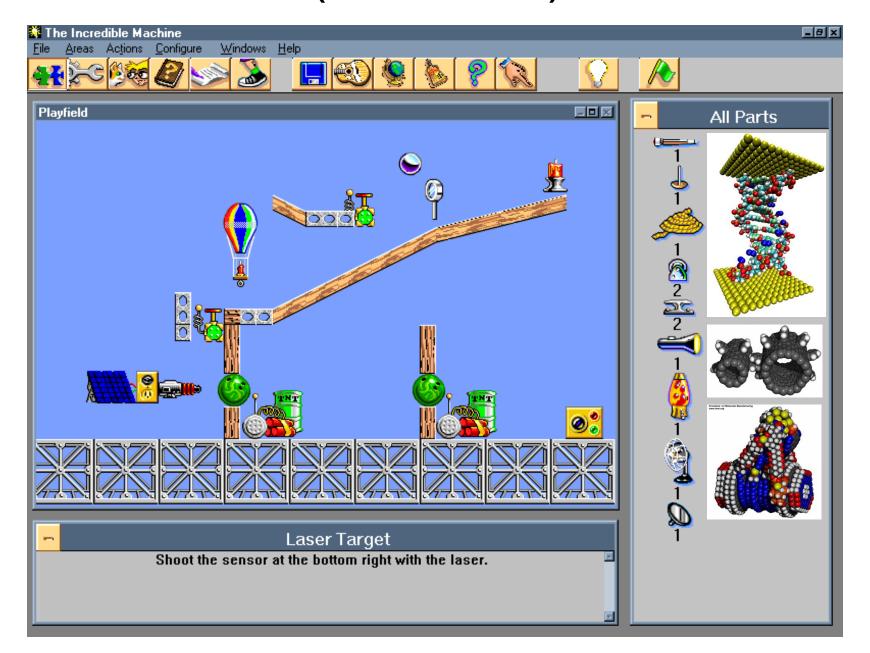
Challenge the Professor


Independent Evaluation: to ask which method is best and why: physical exhibit, online learning games, or both?

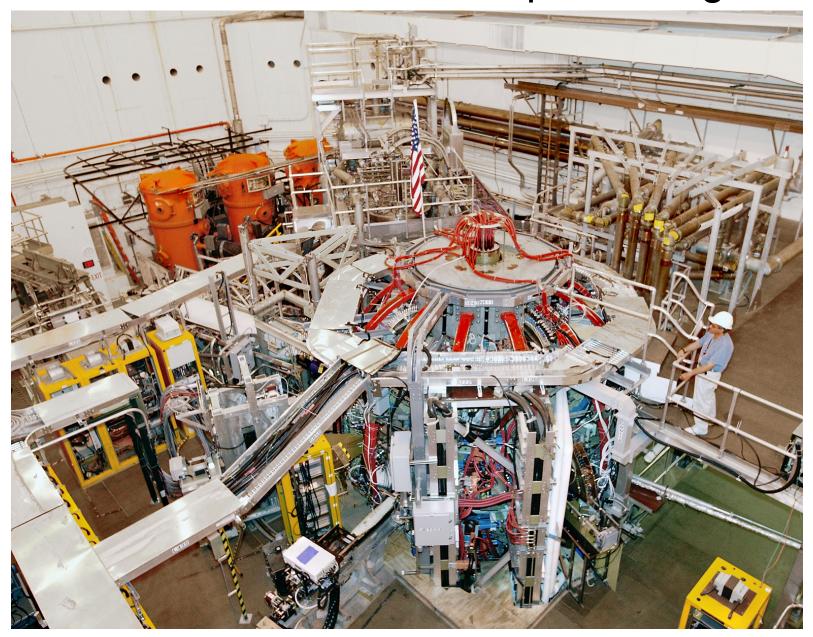
DSC+UCI working to develop network of SLG-based science centers

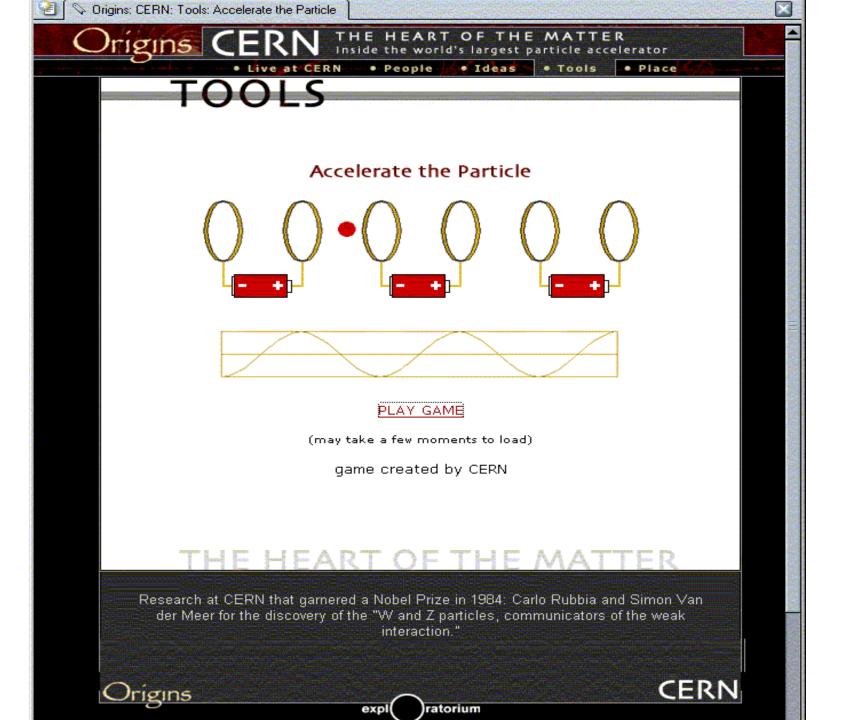
- Tier 1: Individual player connection: your Internet connection at home.
- Tier 2: Local institutional connection: library, science center, school.
- Tier 3: Regional science center provides local exhibit content connected online.
- Tier 4: "Gateway" science centers provide open interfaces and content.
- Tier 5: Science Center Grid: Massive Multiplayer Online Science Learning Games

Cyberinfrastructure for Science Centers


Cyberinfrastructure allows for:

- Networked Science Centers across the U.S. (and beyond).
- Can be applied in multiple scientific, technological, or engineering domains
- Can be further developed and expanded w/open source software components, infrastructure, and open content.
- Tie into existing networks of science online to enable role migration


Transforming Science, Engineering, and Business via Web 3.0: The Game/Virtual Worlds Web


- Games can employ advanced scientific models, simulations, visualizations
 - Global Climate Systems Science game engine
 - Nanotechnology-based "incredible machines"
 - Environmental ecology preservation/restoration
 - Supply chain/infrastructure transformation quest
- Game Web environments can become platforms for experimentally interacting with emerging scientific models, business processes, and domains of expertise
- Web 3.0 will create new engine for innovation!

Incredible (nanotech) machines

Plasma fusion simulation exploration game

Thank You!

Joe Adams: jadams@discoverycube.org

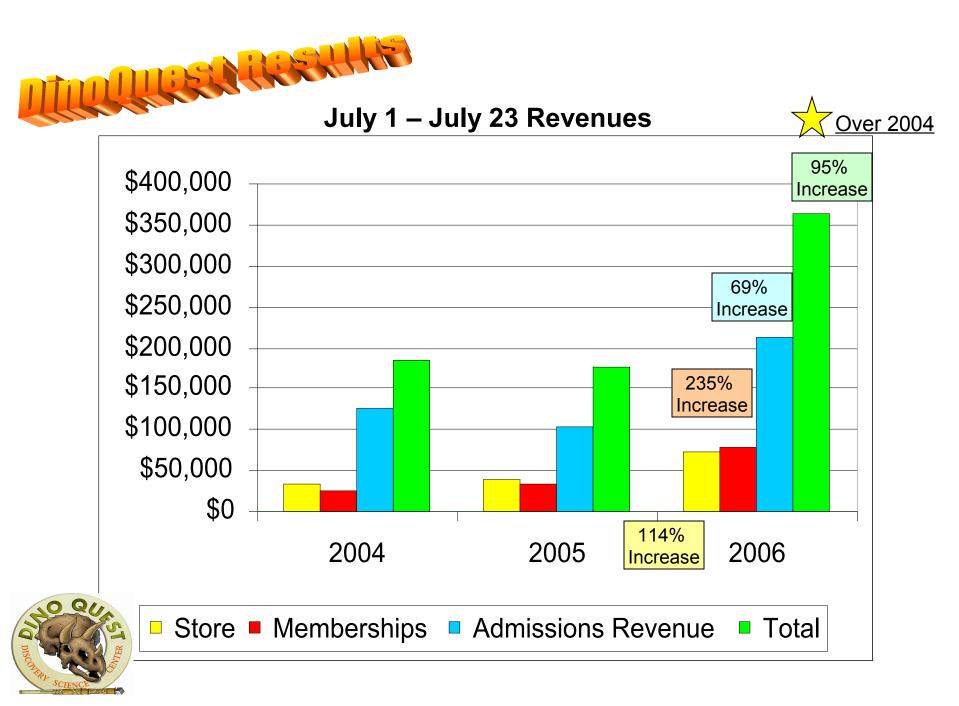
Walt Scacchi: wscacchi@ics.uci.edu

Backup Slides

Project Contributors

- DSC Janet Yamaguchi (VP Education), JoeAnna Jenkins (CFO), Kellee Preston (VP Operations), Leslie Perovich (VP Marketing), Creative Kingdoms Inc., and others
- UCI Robert Nideffer (creative director), Alex Szeto (game programming and art), Calvin Lee (database programming), Celia Pearce (design contributions)

Discovery Science Center Partners and Sponsors


- Ingram Micro
- IBM
- First American Corporation
- Orange County Department of Education
- State of California
- Capital Group
- California State Fullerton, Education Department
- Wiengart Foundation
- 3M Corporation
- Google
- Children's Hospital of Orange County
- UCI Game Lab
- UCI Center for Graphics, Visualization and Imaging Technology
- California Institute for Telecommunications and Information Technology: (Calit2) at UCI-UCSD
- and others

For further information, see http://discoverycube.org

UCI Game Lab Partners and Sponsors

- California Institute for Telecommunications and Information Technology: Calit2 at UCI-UCSD
- San Diego Supercomputer Center (SDSC) at UCSD
- UCI Center for Graphics, Visualization and Imaging Technology
- UCI Institute for Software Research
- UCI Arts, Computation, and Engineering (ACE) Program
- UCSD Experimental Game Lab
- Calit2 ACTION Laboratory
- Discovery Science Center, Santa Ana, CA
- Daegu Global R&D Collaboration Center, Daegu, South Korea
- National Science Foundation
- Sun Microsystems
- UC Humanities Research Institute
- and others

For further information, see http://ucgamelab.net

DinoQuest Online

DinoQuest Online--Prof. Sanchez at DigPit

Uncovering Tailbones fossil at DigPit

Emerging opportunities

- Regional science centers as legitimate, family-friendly venue for informal science education
 - Learning and evaluation challenges when engaging >100K students/year on site, and potentially >1M students/year over the Web
- Enabling cross-cultural language learning via extensible online game environment